skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ahn, Christine Heera"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract An aqueous emulsion of conducting polymer is commonly applied on a substrate to form a coating after drying. The coating, however, disintegrates in water. This paper reports a coating prepared using a mixture of two emulsions: an aqueous emulsion of conducting polymer, and an aqueous emulsion of hydrophobic and rubbery chains copolymerized with silane coupling agents. When applied on a substrate and dried, particles of the mixed emulsion merge into a continuous film. While the conducting polymer forms percolated nanocrystals, the silane groups crosslink the rubbery chains and interlink the rubbery chains to the substrate. The percolated nanocrystals make the coating highly conductive. The covalent network of hydrophobic polymer chains stabilizes the coating in water. The high conductivity and stability in water may enable broad applications. 
    more » « less
  2. Hydrogels are being developed to bear loads. Applications include artificial tendons and muscles, which require high strength to bear loads and low hysteresis to reduce energy loss. However, simultaneously achieving high strength and low hysteresis has been challenging. This challenge is met here by synthesizing hydrogels of arrested phase separation. Such a hydrogel has interpenetrating hydrophilic and hydrophobic networks, which separate into a water-rich phase and a water-poor phase. The two phases arrest at the microscale. The soft hydrophilic phase deconcentrates stress in the strong hydrophobic phase, leading to high strength. The two phases are elastic and adhere through topological entanglements, leading to low hysteresis. For example, a hydrogel of 76 weight % water, made of poly(ethyl acrylate) and poly(acrylic acid), achieves a tensile strength of 6.9 megapascals and a hysteresis of 16.6%. This combination of properties has not been realized among previously existing hydrogels. 
    more » « less